
devarapalli.demudubabu, Gachi swami/ International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1189-1199

Fast QueryProcessing With Clustering Algorithm

1189 | P a g e

devarapalli.demudubabu(m.tech)

jyothismathi engineering college,karimnagar,

Andhrapradesh, india

Abstract
Clustering, in data mining, is useful for

discovering groups and identifying interesting

distributions in the underlying data and to fast

query processing. Traditional clustering

algorithms either favor clusters with spherical

shapes and similar sizes, or are very fragile in the

presence of outliers. We propose a new

clustering algorithm called CURE that is more

robust to outliers, and identifies clusters having

non-spherical shapes and wide variances in size.

CURE achieves this by representing each cluster

by a certain fixed number of points that are

generated by selecting well scattered points from

the cluster and then shrinking them toward the

center of the cluster by a specified fraction.

Having more than one representative point per

cluster allows CURE to adjust well to the

geometry of non-spherical shapes and the

shrinking helps to dampen the effects of outliers.

To handle large databases, CURE employs a

combination of random sampling and

partitioning. A random sample drawn from the

data set is first partitioned and each partition is

partially clustered. The partial clusters are then

Gachi swami(associate professor)
Jyothismathi engineering college, karinnagar,

Andhrapradesh,india

clustered in a second pass to yield the desired

clusters.Our experimental results confirm that the

quality of clusters produced by CURE is much better

than those found by existing algorithms.

Furthermore, they demonstrate that random sampling

and partitioning enable CURE to not only outperform

existing algorithms but also to scale well for large

databases without sacrificing clustering quality.

Keywords:randomsampling,partitioning,clustering

algorithm.

1 Introduction
The wealth of information embedded in huge

databases belonging to corporations (e.g., etail,

financial, telecom) has spurred a tremendous interest

in the areas of lcnowledge discovery and data mining.

Clustering, in data mining, is a useful technique for

discovering interesting data distributions and patterns

in the underlying data. The problem of clustering can

be defined as follows: given n data points in a d-

dimensional metric space, partition the data points

into small points to make fast searching of data.

devarapalli.demudubabu, Gachi swami/ International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1189-1199

Fast QueryProcessing With Clustering Algorithm

1190 | P a g e

clusters such that the data points within a cluster are

more similar to each other than data points in

different clusters.

2. Traditional Clustering Algorithms -

Drawbacks
Existing clustering algorithms can be broadly

classified into partitional and hierarchical [JD88].

Partitional clustering algorithms attempt to determine

k partitions that optimize a certain criterion function.

The square-error criterion, defined below, is the most

commonly used (m; is the mean of cluster Ci).

The square-error is a good measure of the

within-cluster variation across all the partitions.

The objective is to find L partitions that

minimize the square-error. Thus, squareerror

clustering tries to make the k clusters as compact

and separated as possible, and works well when

clusters are compact clouds that are rather well

separated from one another. However, when

there are large differences in the sizes or

geometries of different clusters, as illustrated in

Figure 1, the square-error method could split

large clusters to minimize the square-error. In

the figure, the square-error is larger for the three

separate clusters in (a) than for the three clusters

in (b) where the big cluster is split into three

portions, one of which is merged with the two

smaller clusters. The reduction in square-error

for (b) is due to the fact that the slight

reduction in square error due to splitting the

large cluster is weighted by many data points in

the large cluster. A hierarchical clustering is a

sequence of partitions in which each partition is

nested into the next partition in the sequence. An

agglomerative algorithm for hierarchical

clustering starts with the disjoint set of clusters,

which places each input data point in an

individual cluster. Pairs of items or clusters are

then successively merged until the number of

clusters reduces to Ic. At each step, the pair of

clusters merged are the ones between which the

distance is the minimum. The widely used

measures for distance between clusters are as

follows (mi is the mean for cluster Ci and n;

is the number of points in Ci).

devarapalli.demudubabu, Gachi swami/ International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1189-1199

Fast QueryProcessing With Clustering Algorithm

1191 | P a g e

For example, with d,,,, as the distance measure,

at each step, the pair of clusters whose centroids

or means are the closest are merged. On the other

hand, with d,i,, the pair of clusters merged are

the ones containing the closest pair of points. All

of the above distance measures have a minimum

variance flavor and they usually yield the same

results if the

 clusters are compact and well-separated.

However, if the clusters are close to one another

(even by outliers), or if their shapes and sizes are

not hyperspherical and uniform, the results

of clustering can vary quite dramatically. For

example, with the data set shown in Figure l(a),

using d,,,, d,,, or d,,,, as the distance measure

results in clusters that are similar to those

obtained by the square-error method shown in

Figure l(b). Similarly, consider the example data

points in Figure 2. The desired elongated clusters

are shown in Figure 2(a). However, d,,,, as the

distance measure, causes the elongated clusters

to be split and portions belonging to neighboring

elongated clusters to be merged. The resulting

clusters are as shown in Figure 2(b). On the other

hand, with dmin as the distance measure, the

resulting clusters are as shown in Figure 2(c).

The two elongated clusters that are connected by

narrow string of points are merged into a single

cluster. This “chaining effect” is a drawback of

d,in - basically, a few points located so as to

form a bridge between the two clusters causes

points across the clusters to be grouped into a

single elongated cluster. From the above

discussion, it follows that neither the centroid-

based approach (that uses d,,,,) nor the all-points

approach (based on d,i,) work well for non-

spherical or arbitrary shaped clusters. A

shortcoming of the centroidbased approach is

that it considers only one point as representative

of a cluster - the

cluster centroid. For a large or arbitrary shaped

cluster, the centroids of its subclusters can be

reasonably far apart, thus causing the cluster to

be split. The all-points approach, on the other

hand, considers all the points within a cluster as

representative of the cluster. This other extreme,

has its own drawbacks, since it makes the

clustering algorithm extremely sensitive to

outliers and to slight changes in the position of

data points. When the number N of input data

points is large, hierarchical clustering algorithms

break down due to their non-linear time

complexity (typically, O(N’)) and huge I/O

costs. In order to remedy this problem, in

[ZRL96], the authors propose a new clustering

method named BIRCH, which represents the

state of the art for clustering large data sets.

devarapalli.demudubabu, Gachi swami/ International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1189-1199

Fast QueryProcessing With Clustering Algorithm

1192 | P a g e

BIRCH first performs a preclzlstering phase in

which dense regions of points are represented by

compact summaries, and then a centroid-based

hierarchical algorithm is used to cluster the set of

summaries (which is much smaller than the

original dataset). The preclustering algorithm

employed by BIRCH to reduce input size is

incremental and approximate. During

preclustering, the entire database is scanned, and

cluster summaries are stored in memory in a data

structure called the CF-tree. For each successive

data point, the CF-tree is traversed to find the

closest cluster to it in the tree, and if

the point is within a threshold distance of the

closest cluster, it is absorbed into it. Otherwise, it

starts its own cluster in the CF-tree. Once the

clusters are generated, a final labeling phase is

carried out in which using the centroids of

clusters as seeds, each data point is assigned to

the cluster with the closest seed. Using only the

centroid of a cluster when redistributing the data

in the final phase has problems when clusters do

not have uniform sizes and shapes as in Figure

3(a). In this case, as illustrated in Figure 3(b), in

the final labeling phase, a number of points in

the bigger cluster are labeled as belonging to the

smaller cluster since they are closer to the

centroid of the smaller cluster.

3.Our Contributions
In this paper, we propose a new clustering

method named CURE (Clustering Using

Representatives) whose salient features are

described below. Hierarchical Clustering

Algorithm: CURE employs a novel hierarchical

clustering algorithm that adopts a middle ground

between the centroid-based and the all-point

extremes. In CURE, a constant number c of well

scattered points in a cluster are first chosen. The

scattered points capture the shape and extent of

the cluster. The chosen scattered points are next

shrunk towards the centroid of the cluster by a

fraction cr. These scattered points after shrinking

are used as representatives

of the cluster. The clusters with the closest pair

of representative points are the clusters that are

merged at each step of CURE’s hierarchical

clustering algorithm. The scattered points

approach employed by CURE alleviates the

shortcomings of both the all-points as well as the

centroid-based approaches. It enables CURE to

correctly identify the clusters in Figure 2(a) - the

resulting clusters due to the centroid-based and

all-points approaches is as shown in Figures 2(b)

and 2(c), respectively. CURE is less sensitive to

outliers since shrinking the scattered points

toward the mean dampens the adverse effects

due to outliers ~ outliers are typically further

away from the mean and are thus shifted a larger

distance due to the shrinking. Multiple scattered

points also enable CURE to discover non-

spherical clusters like the elongated clusters

shown in Figure 2(a). For the centroid-based

algorithm, the space that constitutes the vicinity

of the single centroid for a cluster is spherical.

devarapalli.demudubabu, Gachi swami/ International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1189-1199

Fast QueryProcessing With Clustering Algorithm

1193 | P a g e

Thus, it favors spherical clusters and as shown in

Figure 2(b), splits the elongated clusters. On the

other hand, with multiple scattered points as

representatives of a cluster, the space

Figure 2: Clusters generated by hierarchical

algorithms

Figure 3: Problem of labeling

that forms the vicinity of the cluster can be non-

spherical, and this enables CURE to correctly

identify the clusters in Figure 2(a). Note that the

kinds of clusters identified by CURE can be tuned by

varying 0: between 0 and 1. CURE reduces to the

centroid-based algorithm if (Y = 1, while for cy = 0,

it becomes similar to the all-points approach.

CURE’s hierarchical clustering algorithm uses space

that is linear in the input size n and has a worst-case

time complexity of O(n2 log n). For lower

dimensions (e.g., two), the complexity can be shown

to further reduce to O(n’). Thus, the time complexity

of CURE is no worse than that of the centroidbased

hierarchical algorithm.

Random Sampling and Partitioning:

CURE’s approach to the clustering problem for large

data sets differs from BIRCH in two ways. First,

instead of preclustering with all the data points,

devarapalli.demudubabu, Gachi swami/ International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1189-1199

Fast QueryProcessing With Clustering Algorithm

1194 | P a g e

CURE begins by drawing a random sample from the

database. We show, both analytically and

experimentally, that random samples of moderate

sizes preserve information about the geometry of

clusters fairly accurately, thus enabling CURE to

correctly cluster the input. In particular, assuming

that each cluster has a certain minimum size, we use

chernoff bounds to calculate the minimum sample

size for which the sample contains, with high

probability, at least a fraction f of every cluster.

Second, in order to further speed up clustering,

CURE first partitions the random sample and

partially clusters the data points in each partition.

After eliminating outliers, the preclustered data in

each partition is then clustered in a final pass to

generate the final clusters.

Labeling Data on Disk:

Once clustering of the random sample is completed,

instead of a single centroid, multiple representative

points from each cluster are used to label the

remainder of the data set. The problems with

BIRCH’s labeling phase are eliminated by assigning

each data point to the cluster containing the closest

representative point. Overview: The steps involved in

clustering using CURE.

Clustering procedure: Initially, for each cluster u,

the set of representative points w..rep contains only

the point in the cluster. Thus, in Step 1, all input data

points are inserted into the k-d tree. The procedure

buildheap (in Step 2) treats each input point as a

separate cluster, computes uclosest for each cluster u

and then inserts each cluster into the heap (note that

the clusters are arranged in the increasing order of

distances between u and wclosest). Once the heap Q

and tree T are initialized, in each iteration of the

while-loop, until only k clusters remain, the closest

pair of clusters is merged. The cluster u at the top of

the heap Q is the cluster for which u and uxlosest are

the closest pair of clusters. Thus, for each step of the

whileloop, extractmin (in Step 4) extracts the top

element u in

Q and also deletes u from

Q.

Figure 4: Clustering algorithm

devarapalli.demudubabu, Gachi swami/ International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1189-1199

Fast QueryProcessing With Clustering Algorithm

1195 | P a g e

4. Clustering Algorithm

In this subsection, we describe the details of our

clustering algorithm(seeFigure 5). The input

parameters to our algorithm are the input data set

S containing n points in ddimensional

space and the desired number of clusters k. As

we mentioned earlier, starting with the individual

points as individual clusters, at each step the

closest pair of clusters is merged to form a new

cluster. The process is repeated until there are

only k remaining clusters.

5.Algorithms
BIRCH: We used the implementation of BIRCH

provided to us by the authors of [ZRL96]. The

mplementation performs preclustering and then

uses a centroid-based hierarchical clustering

algorithm with time and space complexity that is

quadratic in the number of points after

preclustering. We set parameter values to the

default values suggested in [ZRL96]. For

example, we set the page size to 1024 bytes and

the input size to the hierarchical clustering

algorithm after the preclustering phase to 1000.

The memory used for preclustering was set to be

about 5% of dataset size.

CURE: Our version of CURE is based on the

clustering algorithm described in Section 4, that

uses representative points with shrinking towards

the mean. As described at the end of Section 3,

when two clusters are merged in each step of the

algorithm, representative points for the new

merged cluster are selected from the ones for the

two original clusters rather than all points in the

merged cluster. This improvement speeds up

execution times for CURE without adversely

impacting the quality of clustering.

 figure 5 datasets (b) CURE

devarapalli.demudubabu, Gachi swami/ International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1189-1199

Fast QueryProcessing With Clustering Algorithm

1196 | P a g e

(a) BRICH

Figure: 5 datasets

5.1.Time and Space Complexity
The worst-case time complexity of our clustering

algorithm can be shown to be O(n2 logn). In

[GRS97], we show that when the dimensionality

of data points is small, the time complexity

further reduces to O(n2). Since both the heap and

the /c-d tree require linear space, it follows that

the spacecomplexity of our algorithm is O(n).

 6. Enhancements for Large Data Sets
Most hierarchical clustering algorithms,

including the one presented in the previous

subsection, cannot be directly applied to large

data sets due to their quadratic time complexity

with respect to the input size. In this section, we

present enhancements and optimizations that

enable CURE to handle large data sets. We also

address the issue of outliers and propose

schemes to eliminate them.

6.1 Random Sampling
In order to handle large data sets, we need an

effective mechanism for reducing the size of the

input to CURE’s clustering algorithm. One

approach to achieving this is via random

sampling - the key idea is to apply CURE’s

clustering algorithm to a random sample drawn

from the data set rather than the entire data set.

Typically, the random sample will fit in main-

memory and will be much smaller than the

original data set. Consequently, significant

improvements in execution times for CURE can

be realized. Also, random sampling can improve

the quality of clustering since it has the desirable

effect of filtering outiiers. Efficient algorithms

for drawing a sample randomly from data in a

file in one pass and using constant space are

proposed in [Vit85]. As a result, we do not

discuss sampling in any further detail, and

assume that we employ one of the well-known

algorithms for generating the random sample.

Also, our experience has been that generally, the

overhead of generating a random sample is very

small compared to the time for performing

clustering on the sample (the random sampling

algorithm typically takes less than two seconds

to sample a few thousand points from a file

containing hundred thousand or more points).

6.2 Partitioning for Speedup

devarapalli.demudubabu, Gachi swami/ International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1189-1199

Fast QueryProcessing With Clustering Algorithm

1197 | P a g e

As the separation between clusters decreases and

as clusters become less densely packed, samples

of larger sizes are required to distinguish them.

However, as the input size n grows, the

computation that needs to be performed by

CURE’s clustering algorithm could end up being

fairly substantial due to the O(n2 log n) time

complexity. In this subsection, we propose a

simple partitioning scheme for speeding up

CURE when input sizes become large.

The basic idea is to partition the sample space

into p partitions, each of size %. We then

partially cluster each partition until the final

number of clusters in each partition reduces to 5

for some constant q > 1. Alternatively, we could

stop merging clusters in a partition if the distance

between the closest pair of clusters to be merged

next increases above a certain threshold. Once

we have generated $ clusters for each partition,

we then run a second clustering pass on the s

partial clusters for all the partitions (that resulted

from the first pass).

6.3 Labeling Data on Disk
Since the input to CURE’s clustering algorithm

is a set of randomly sampled points from the

original data set, the final k clusters involve only

a subset of the entire set of points. In CURE, the

algorithm for assigning the appropriate cluster

labels to the remaining data points employs a

fraction of randomly selected representative

points for each of the final k clusters. Each data

point is assigned to the cluster containing the

representative point closest to it. Note that

approximating every cluster with multiple points

instead a single centroid as is done in [ZRL96],

enables CURE to, in the final phase, correctly

distribute the data points when clusters are non-

spherical or non-uniform. The final labeling

phase of [ZRLSG], since it employs only the

centroids of the clusters for partitioning the

remaining points,

6.4 Handling Outliers
Any data set almost always contains o&hers.

These do not belong to any of the clusters and

are typically defined to be points of non

agglomerative behavior. That is, the

neighborhoods

of outliers are generally sparse compared to

points in clusters, and the distance of an outlier

to the nearest cluster is comparatively higher

than the distances among points in bon&de

clusters themselves. Every clustering method

needs mechanisms to eliminate outliers. In

CURE, outliers are dealt with at multiple steps.

First, random sampling filters out a majority of

the outliers. Furthermore, the few outlicrs that

actually make it into the random sample are

distributed all over the sample space. Thus,

random sampling further isolates outliers. In

agglomerative hierarchical clustering, initially

each point is a separate cluster. Clustering then

proceeds by merging closest points first. What

this suggests is that outliers, due to their larger

distances from other points, tend to merge with

devarapalli.demudubabu, Gachi swami/ International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1189-1199

Fast QueryProcessing With Clustering Algorithm

1198 | P a g e

other points less and typically grow at a much

slower rate than actual clusters. Thus, the

number of points in a collection of outliers is

typically much less than the number in a cluster.

7.conclusion

In this paper, we addressed problems with

traditional clustering algorithms and solution to

enhance the query processing.which either favor

clusters with spherical shapes and similar sizes,

or are very fragile in the presence of outliers. We

proposed a clustering method called CURE.

CURE utilizes multiple representative points for

each cluster that are generated by selecting well

scattered points from the cluster and then

shrinking them toward the center of the cluster

by a specified fraction. This enables CURE to

adjust well to the geometry of clusters having

non-spherical shapes and wide variances in size.

To handle large databases, CURE employs a

combination of random sampling and

partitioning that allows it to handle large data

sets efficiently. Random sampling, coupled with

outlier handling techniques, also makes it

possible for CURE to filter outliers contained in

the data set effectively. Furthermore, the labeling

algorithm in CURE uses multiple random

representative points or each cluster to assign

data points on disk. This enables t to correctly

label points even when the shapes of clusters are

non-spherical and the sizes of clusters vary. For a

random sample size of 3, the time complexity of

CURE is 0(s2) for low-dimensional data and the

space complexity is linear in s. To study the

effectiveness of CURE for clustering large data

sets, we conducted extensive experiments. Our

results confirm that the quality of clusters

produced by CURE is much better than those

found by existing algorithms. Furthermore, they

demonstrate that CURE not only outperforms

existing algorithms but also scales well for large

databases without sacrificing clustering quality.

REFERENCES
[1]N. Beckmann, H.-P. Kriegei, R. Schneider,

and B. Seeger. The R*-tree: an efficient and

robust access method for points and rectangles.

In Proc. Of ACM SIGMOD, pages 322-331,

Atlantic City, NJ,May 1990

[2]Thomas H. Cormen, Charles E. Leiserson,

and Ronald L. Rivest. Introduction to

Algorithms. The MIT Press, Massachusetts,

1990.

[3]Martin Ester, Hans-Peter Kriegel, Jorg

Sander, and Xiaowei Xu. A density-based

algorithm for discovering clusters in large spatial

database with noise. In I&‘1 Conference on

Knowledge Discovery in Databases and Data

Mining (KDD-96), Portland, Oregon, August

1996.

[4]Martin Ester, Hans-Peter Kriegel, and

Xiaowei Xu. A database interface for clustering

devarapalli.demudubabu, Gachi swami/ International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1189-1199

Fast QueryProcessing With Clustering Algorithm

1199 | P a g e

in large spatial databases. In Int’l Conference on

Knowledge Discovery in Databases and Data

Mining (KDD-95), Montreal, Canada, August

1995.

[5]Sudipto Guha, R. Rastogi, and K. Shim.

CURE: A clustering algorithm for large

databases. Technical report, Bell Laboratories,

Murray Hill, 1997.

[6]Anil K. Jain and Richard C. Dubes.

Algorithms for Clustering Data. Prentice Hall,

Englewood Cliffs, New Jersey, 1988.

[7]R. Motwani and P. Raghavan. Randombed

Algorithms. Cambridge University Press, 1995.

[8]Raymond T. Ng and Jiawei Han. Efficient and

effective clustering methods for spatial data

mining. In Proc. of the VLDB Conference,

Santiago, Chile, September

1994.

[10]Clark F. Olson. Parallel algorithms for

hierarchical clustering. Technical report,

University of California at Berkeley, December

1993.

[11]H. Samet. The Design and Analysis of

Spatial Data Structures. Addison-Wesley, 1989.

Hanan Samet. The Design and Analysis of

Spatial Data Structures. Addison-Wesley

Publishing Company, Inc., New York, 1990.

[12]T. Sellis, N. Roussopoulos, and C. Faioutsos.

The R+ tree: a dynamic index for multi-

dimensional objects. In Proc. 13th Int’l

Conference on VLDB, pages 507~- 518,

England, 1987.

[13]Jeff Vitter. Random sampling with a

reservoir. ACM Transactions on Mathematical

Software, 11(1):37-57, 1985.

[14]Tian Zhang, Raghu Ramakrishnan, and

Miron Livny. Birch: An efficient data clustering

method for very large databases. In Proceedings

of the ACM SIGMOD Conference on

ManagementofData,pageS103-114, Montreal,

Canada, June 1996.

