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Abstract 
Clustering, in data mining, is useful for 

discovering groups and identifying interesting  

distributions in the underlying data and to fast 

query processing. Traditional clustering 

algorithms either favor clusters with spherical 

shapes and similar sizes, or are very fragile in the 

presence of outliers. We propose a new 

clustering algorithm called CURE that is more 

robust to outliers, and identifies clusters having 

non-spherical shapes and wide variances in size. 

CURE achieves this by representing each cluster 

by a certain fixed number of points that are 

generated by selecting well scattered points from 

the cluster and then shrinking them toward the 

center of the cluster by a specified fraction. 

Having more than one representative point per 

cluster allows CURE to adjust well to the 

geometry of non-spherical shapes and the 

shrinking helps to dampen the effects of outliers. 

To handle large databases, CURE employs a 

combination of random sampling and 

partitioning. A random sample drawn from the 

data set is first partitioned and each partition is 

partially clustered. The partial clusters are then  
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clustered in a second pass to yield the desired 

clusters.Our experimental results confirm that the 

quality of clusters produced by CURE is much better 

than those found by existing algorithms. 

Furthermore, they demonstrate that random sampling 

and partitioning enable CURE to not only outperform 

existing algorithms but also to scale well for large 

databases without sacrificing clustering  quality. 
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1 Introduction 
The wealth of information embedded in huge 

databases belonging to corporations (e.g.,  etail, 

financial, telecom) has spurred a tremendous interest 

in the areas of lcnowledge discovery and data mining. 

Clustering, in data mining, is a useful technique for 

discovering interesting data distributions and patterns 

in the underlying data. The problem of clustering can 

be defined as follows: given n data points in a d-

dimensional metric space, partition the data points 

into small points to make fast searching of data.  
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clusters such that the data points within a cluster are 

more similar to each other than data points in 

different clusters. 

2. Traditional Clustering Algorithms - 

Drawbacks 
Existing clustering algorithms can be broadly 

classified into partitional and hierarchical [JD88]. 

Partitional clustering algorithms attempt to determine 

k partitions that optimize a certain criterion function. 

The square-error criterion, defined below, is the most 

commonly used (m; is the mean of cluster Ci).  

 
 

 
 

The square-error is a good measure of the 

within-cluster variation across all the partitions.  

The objective is to find L partitions that 

minimize the square-error. Thus, squareerror 

clustering tries to make the k clusters as compact 

and separated as possible, and works well when 

clusters are compact clouds that are rather well 

separated from one another. However, when 

there are large differences in the sizes or 

geometries of different clusters, as illustrated in 

Figure 1, the square-error method could split 

large clusters to minimize the square-error.  In 

the figure, the square-error is larger for the three 

separate clusters in (a) than for the three clusters 

in (b) where the big cluster is split into three 

portions, one of which is merged with the two 

smaller clusters. The reduction in square-error 

for (b) is due to the fact that the slight 

reduction in square error due to splitting the 

large cluster is weighted by many data points in 

the large cluster. A hierarchical clustering is a 

sequence of partitions in which each partition is 

nested into the next partition in the sequence. An 

agglomerative algorithm for hierarchical 

clustering starts with the disjoint set of clusters, 

which places each input data point in an 

individual cluster. Pairs of items or clusters are 

then successively merged until the number of 

clusters reduces to Ic. At each step, the pair of 

clusters merged are the ones between which the 

distance is the minimum. The widely used 

measures for distance between clusters are as 

follows (mi is the mean for cluster Ci and n; 

is the number of points in Ci). 
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For example, with d,,,, as the distance measure, 

at each step, the pair of clusters whose centroids 

or means are the closest are merged. On the other 

hand, with d,i,, the pair of clusters merged are 

the ones containing the closest pair of points. All 

of the above distance measures have a minimum 

variance flavor and they usually yield the same 

results if the 

 clusters are compact and well-separated. 

However, if the clusters are close to one another 

(even by outliers), or if their shapes and sizes are 

not hyperspherical and uniform, the results 

of clustering can vary quite dramatically. For 

example, with the data set shown in Figure l(a), 

using d,,,, d,,, or d,,,, as the distance measure 

results in clusters that are similar to those 

obtained by the square-error method shown in 

Figure l(b). Similarly, consider the example data 

points in Figure 2. The desired elongated clusters 

are shown in Figure 2(a). However, d,,,, as the 

distance measure, causes the elongated clusters 

to be split and portions belonging to neighboring 

elongated clusters to be merged. The resulting 

clusters are as shown in Figure 2(b). On the other 

hand, with dmin as the distance measure, the 

resulting clusters are as shown in Figure 2(c). 

The two elongated clusters that are connected by 

narrow string of points are merged into a single 

cluster. This “chaining effect” is a drawback of 

d,in - basically, a few points located so as to 

form a bridge between the two clusters causes 

points across the clusters to be grouped into a 

single elongated cluster.  From the above 

discussion, it follows that neither the centroid-

based approach (that uses d,,,,) nor the all-points 

approach (based on d,i,) work well for non-

spherical or arbitrary shaped clusters. A 

shortcoming of the centroidbased approach is 

that it considers only one point as representative 

of a cluster - the  

cluster centroid. For a large or arbitrary shaped 

cluster, the centroids of its subclusters can be 

reasonably far apart, thus causing the cluster to 

be split. The all-points approach, on the other 

hand, considers all the points within a cluster as 

representative of the cluster. This other extreme, 

has its own drawbacks, since it makes the 

clustering algorithm extremely sensitive to 

outliers and to slight changes in the position of 

data points. When the number N of input data 

points is large, hierarchical clustering algorithms 

break down due to their non-linear time 

complexity (typically, O(N’)) and huge I/O 

costs. In order to remedy this problem, in 

[ZRL96], the authors propose a new clustering 

method named BIRCH, which represents the 

state of the art for clustering large data sets. 
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BIRCH first performs a preclzlstering phase in 

which dense regions of points are represented by 

compact summaries, and then a centroid-based 

hierarchical algorithm is used to cluster the set of 

summaries (which is much smaller than the 

original dataset). The preclustering algorithm 

employed by BIRCH to reduce input  size is 

incremental and approximate. During 

preclustering, the entire database is scanned, and 

cluster summaries are stored in memory in a data 

structure called the CF-tree. For each successive 

data point, the CF-tree is traversed to find the 

closest cluster to it in the tree, and if 

the point is within a threshold distance of the 

closest cluster, it is absorbed into it. Otherwise, it 

starts its own cluster in the CF-tree. Once the 

clusters are generated, a final labeling phase is 

carried out in which using the centroids of 

clusters as seeds, each data point is assigned to 

the cluster with the closest seed. Using only the 

centroid of a cluster when redistributing the data 

in the final phase has problems when clusters do 

not have uniform sizes and shapes as in Figure 

3(a). In this case, as illustrated in Figure 3(b), in 

the final labeling phase, a number of points in 

the bigger cluster are labeled as belonging to the 

smaller cluster since they are closer to the 

centroid of the smaller cluster. 

3.Our Contributions 
In this paper, we propose a new clustering 

method named CURE (Clustering Using 

Representatives) whose salient features are 

described below.  Hierarchical Clustering 

Algorithm: CURE employs a novel hierarchical 

clustering algorithm that adopts a middle ground 

between the centroid-based and the all-point 

extremes. In CURE, a constant number c of well 

scattered points in a cluster are first chosen. The 

scattered points capture the shape and extent of 

the cluster. The chosen scattered points are next 

shrunk towards the centroid of the cluster by a 

fraction cr. These scattered points after shrinking 

are used as representatives 

of the cluster. The clusters with the closest pair 

of representative points are the clusters that are 

merged at each step of CURE’s hierarchical 

clustering algorithm. The scattered points 

approach employed by CURE alleviates the 

shortcomings of both the all-points as well as the 

centroid-based approaches. It enables CURE to 

correctly identify the clusters in Figure 2(a) - the 

resulting clusters due to the centroid-based and 

all-points approaches is as shown in Figures 2(b) 

and 2(c), respectively. CURE is less sensitive to 

outliers since shrinking the scattered points 

toward the mean dampens the adverse effects 

due to outliers ~ outliers are typically further 

away from the mean and are thus shifted a larger 

distance due to the shrinking. Multiple scattered 

points also enable CURE to discover non-

spherical clusters like the elongated clusters 

shown in Figure 2(a). For the centroid-based 

algorithm, the space that constitutes the vicinity 

of the single centroid for a cluster is spherical. 
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Thus, it favors spherical clusters and as shown in 

Figure 2(b), splits the elongated clusters. On the 

other hand, with multiple scattered points as 

representatives of a cluster, the space  

 

 
Figure 2: Clusters generated by hierarchical 

algorithms 

 

 

 

Figure 3: Problem of labeling 

that forms the vicinity of the cluster can be non-

spherical, and this enables CURE to correctly 

identify the clusters in Figure 2(a).  Note that the 

kinds of clusters identified by CURE can be tuned by 

varying 0: between 0 and 1. CURE reduces to the 

centroid-based algorithm if (Y = 1, while for cy = 0, 

it becomes similar to the all-points approach. 

CURE’s hierarchical clustering algorithm uses space 

that is linear in the input size n and has a worst-case 

time complexity of O(n2 log n). For lower 

dimensions (e.g., two), the complexity can be shown 

to further reduce to O(n’). Thus, the time complexity 

of CURE is no worse than that of the centroidbased 

hierarchical algorithm. 

Random Sampling and Partitioning: 

CURE’s approach to the clustering problem for large 

data sets differs from BIRCH in two ways. First, 

instead of preclustering with all the data points, 
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CURE begins by drawing a random sample from the 

database. We show, both analytically and 

experimentally, that random samples of moderate 

sizes preserve information about the geometry of 

clusters fairly accurately, thus enabling CURE to 

correctly cluster the input. In particular, assuming 

that each cluster has a certain minimum size, we use 

chernoff bounds to calculate the minimum sample 

size for which the sample contains, with high 

probability, at least a fraction f of every cluster. 

Second, in order to further speed up clustering, 

CURE first partitions the random sample and 

partially clusters the data points in each partition. 

After eliminating outliers, the preclustered data in 

each partition is then clustered in a final pass to 

generate the final clusters.  

Labeling Data on Disk: 

Once clustering of the random sample is completed, 

instead of a single centroid, multiple representative 

points from each cluster are used to label the 

remainder of the data set. The problems with 

BIRCH’s labeling phase are eliminated by assigning 

each data point to the cluster containing the closest 

representative point. Overview: The steps involved in 

clustering using CURE. 

Clustering procedure: Initially, for each cluster u, 

the set of representative points w..rep contains only 

the point in the cluster. Thus, in Step 1, all input data 

points are inserted into the k-d tree. The procedure 

buildheap (in Step 2) treats each input point as a 

separate cluster, computes uclosest for each cluster u 

and then inserts each cluster into the heap (note that 

the clusters are arranged in the increasing order of 

distances between u and wclosest). Once the heap Q 

and tree T are initialized, in each iteration of the 

while-loop, until only k clusters remain, the closest 

pair of clusters is merged. The cluster u at the top of 

the heap Q is the cluster for which u and uxlosest are 

the closest pair of clusters. Thus, for each step of the 

whileloop, extractmin (in Step 4) extracts the top 

element u in 

Q and also deletes u from 

Q.

 
Figure 4: Clustering algorithm 
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4. Clustering Algorithm 

In this subsection, we describe the details of our 

clustering algorithm(seeFigure 5). The input 

parameters to our algorithm are the input data set 

S containing n points in ddimensional 

space and the desired number of clusters k. As 

we mentioned earlier, starting with the individual 

points as individual clusters, at each step the 

closest pair of clusters is merged to form a new 

cluster. The process is repeated until there are 

only k remaining clusters. 

 

 

 

5.Algorithms 
BIRCH: We used the implementation of BIRCH 

provided  to us by the authors of [ZRL96]. The  

mplementation performs preclustering and then 

uses a centroid-based hierarchical clustering 

algorithm with time and space complexity that is 

quadratic in the number of points after 

preclustering. We set parameter values to the 

default values suggested in [ZRL96]. For 

example, we set the page size to 1024 bytes and 

the input size to the hierarchical clustering 

algorithm after the preclustering phase to 1000. 

The memory used for preclustering was set to be 

about 5% of dataset size. 

CURE: Our version of CURE is based on the 

clustering algorithm described in Section 4, that 

uses representative points with shrinking towards 

the mean. As described at the  end of Section 3,  

 

when two clusters are merged in each step of the 

algorithm, representative points for the new 

merged cluster are selected from the ones for the 

two original clusters rather than all points in the 

merged cluster. This improvement speeds up 

execution times for CURE without adversely 

impacting the quality of clustering. 

 figure 5 datasets (b) CURE 
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(a) BRICH                                                           

Figure: 5 datasets 

 

 

 

5.1.Time and Space Complexity 
The worst-case time complexity of our clustering 

algorithm can be shown to be O(n2 logn). In 

[GRS97], we show that when the dimensionality 

of data points is small, the time complexity 

further reduces to O(n2). Since both the heap and 

the /c-d tree require linear space, it follows that 

the spacecomplexity of our algorithm is O(n). 

 6. Enhancements for Large Data Sets  
Most hierarchical clustering algorithms, 

including the one presented in the previous  

subsection, cannot be directly applied to large 

data sets due to their quadratic time complexity 

with respect to the input size. In this section, we 

present enhancements and optimizations that 

enable CURE to handle large data sets. We also 

address the issue of outliers and propose 

schemes to eliminate them. 

6.1 Random Sampling 
In order to handle large data sets, we need an 

effective mechanism for reducing the size of the 

input to CURE’s clustering algorithm. One 

approach to achieving this is via random 

sampling - the key idea is to apply CURE’s 

clustering algorithm to a random sample drawn 

from the data set rather than the entire data set. 

Typically, the random sample will fit in main-

memory and will be much smaller than the 

original data set. Consequently, significant 

improvements in execution times for CURE can 

be realized. Also, random sampling can improve 

the quality of clustering since it has the desirable 

effect of filtering outiiers. Efficient algorithms 

for drawing a sample randomly from data in a 

file in one pass and using constant space are 

proposed in [Vit85]. As a result, we do not 

discuss sampling in any further detail, and 

assume that we employ one of the well-known 

algorithms for generating the random sample. 

Also, our experience has been that generally, the 

overhead of generating a random sample is very 

small compared to the time for performing 

clustering on the sample (the random sampling 

algorithm typically takes less than two seconds 

to sample a few thousand points from a file 

containing hundred thousand or more points). 

6.2 Partitioning for Speedup 
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As the separation between clusters decreases and 

as clusters become less densely packed, samples 

of larger sizes are required to distinguish them. 

However, as the input size n grows, the 

computation that needs to be performed by 

CURE’s clustering algorithm could end up being 

fairly substantial due to the O(n2 log n) time 

complexity. In this subsection, we propose a 

simple partitioning scheme for speeding up 

CURE when input sizes become large. 

The basic idea is to partition the sample space 

into p partitions, each of size %. We then 

partially cluster each partition until the final 

number of clusters in each partition reduces to 5 

for some constant q > 1. Alternatively, we could 

stop merging clusters in a partition if the distance 

between the closest pair of clusters to be merged 

next increases above a certain threshold. Once 

we have generated $ clusters  for each partition, 

we then run a second clustering pass on the s 

partial clusters for all the partitions (that resulted 

from the first pass). 

6.3 Labeling Data on Disk 
Since the input to CURE’s clustering algorithm 

is a set of randomly sampled points from the 

original data set, the final k clusters involve only 

a subset of the entire set of points. In CURE, the 

algorithm for assigning the appropriate cluster 

labels to the remaining data points employs a 

fraction of randomly selected representative 

points for each of the final k clusters. Each data 

point is assigned to the cluster containing the 

representative point closest to it. Note that 

approximating every cluster with multiple points 

instead a single centroid as is done in [ZRL96], 

enables CURE to, in the final phase, correctly 

distribute the data points when clusters are non-

spherical or non-uniform. The final labeling 

phase of [ZRLSG], since it employs only the 

centroids of the clusters for partitioning the 

remaining points, 

6.4 Handling Outliers 
Any data set almost always contains o&hers. 

These do not belong to any of the clusters and 

are typically defined to be points of non 

agglomerative behavior. That is, the 

neighborhoods 

of outliers are generally sparse compared to 

points in clusters, and the distance of an outlier 

to the nearest cluster is comparatively higher 

than the distances among points in bon&de 

clusters themselves. Every clustering method 

needs mechanisms to eliminate outliers. In 

CURE, outliers are dealt with at multiple steps. 

First, random sampling filters out a majority of 

the outliers. Furthermore, the few outlicrs that 

actually make it into the random sample are 

distributed all over the sample space. Thus, 

random sampling further isolates outliers. In 

agglomerative hierarchical clustering, initially 

each point is a separate cluster. Clustering then 

proceeds by merging closest points first. What 

this suggests is that outliers, due to their larger 

distances from other points, tend to merge with 
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other points less and typically grow at a much 

slower rate than actual clusters. Thus, the 

number of points in a collection of outliers is 

typically much less than the number in a cluster. 

 

 

7.conclusion 
 

In this paper, we addressed problems with 

traditional clustering algorithms  and solution to 

enhance the query processing.which either favor 

clusters with spherical shapes and similar sizes, 

or are very fragile in the presence of outliers. We 

proposed a clustering method called CURE. 

CURE utilizes multiple representative points for 

each cluster that are generated by selecting well 

scattered points from the cluster and then 

shrinking them toward the center of the cluster 

by a specified fraction. This enables CURE to 

adjust well to the geometry of clusters having 

non-spherical shapes and wide variances in size. 

To handle large databases, CURE employs a 

combination of random sampling and 

partitioning that allows it to handle large data 

sets efficiently. Random sampling, coupled with 

outlier handling techniques, also makes it 

possible for CURE to filter outliers contained in 

the data set effectively. Furthermore, the labeling 

algorithm in CURE uses multiple random 

representative points or each cluster to assign 

data points on disk. This enables  t to correctly 

label points even when  the shapes of clusters are 

non-spherical and the sizes of clusters vary. For a 

random sample size of 3, the time complexity of 

CURE is 0(s2) for low-dimensional data and the 

space complexity is linear in s. To study the 

effectiveness of CURE for clustering large data 

sets, we conducted extensive experiments. Our 

results confirm that the quality of clusters 

produced by CURE is much better than those 

found by existing algorithms. Furthermore, they 

demonstrate that CURE not only outperforms 

existing algorithms but also scales well for large 

databases without sacrificing clustering quality. 
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